Effects of scatterers' sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation.
نویسندگان
چکیده
We employ the finite-difference time-domain (FDTD) technique as a numerical approach to studying the effects of scatterers' sizes on near-field coherent anti-Stokes Raman scattering (CARS) microscopy under tightly focused radially and linearly polarized light excitations. The FDTD results show that in a uniform medium (water), the full width at half maximum (FWHM) (transverse resolution) of radially polarized near-field CARS (RP-CARS) radiation is approximately 7.7% narrower than that of linearly polarized near-field CARS (LP-CARS) imaging, whereas the depth of focus (DOF) of RP-CARS radiation is 6.5% longer than LP-CARS. However, with the presence of scatterers in the uniform medium, both the FHWM and DOF of near-field RP-CARS radiation become much narrower compared to those of near-field LP-CARS radiation. In addition, the signal to nonresonant background ratio of near-field RP-CARS is significantly improved when the scatterer's size is larger than a half wavelength of the pump light field. This work suggests that near-field CARS radiations are strongly influenced by the scatterers' sizes in the medium; and near-field RP-CARS microscopy is superior to the near-field LP-CARS by providing both higher transverse and axial resolutions for three-dimensional molecular imaging of fine structures in biological systems.
منابع مشابه
Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light.
We report a radially polarized coherent anti-Stokes Raman scattering (RP-CARS) microscopy for facilitating longitudinally oriented molecules detection. We observe that under tight focusing of radially polarized pump and Stokes light fields with a high-NA objective, RP-CARS radiation from molecules oriented along the longitudinal direction is approximately threefold stronger than that using line...
متن کاملNumerical study of effects of light polarization, scatterer sizes and orientations on near-field coherent anti-Stokes Raman scattering microscopy.
We employ the finite-difference time-domain (FDTD) technique as a numerical approach to studying the effects of polarization, scatterers' sizes and orientations on near-field coherent anti-Stokes Raman scattering (CARS) microscopy imaging. The results show that to acquire better image contrast and larger near-field CARS signals, the scatterers with diameters of less than three-eighths of the pu...
متن کاملInteraction of radially polarized focused light with a prolate spheroidal nanoparticle.
The interaction of a nanoparticle with light is affected by nanoparticle geometry and composition, as well as by focused beam parameters, such as the polarization and numerical aperture of the beam. The interaction of a radially focused beam with a prolate spheroidal nanoparticle is particularly important because it has the potential to produce strong near-field electromagnetic radiation. Stron...
متن کاملInterferometric switching of coherent anti-Stokes Raman scattering signals in microscopy.
Coherent anti-Stokes Raman scattering (CARS) interferometry is used to deplete the anti-Stokes radiation emerging from a tightly focused spot. Near-to-complete depletion of the anti-Stokes radiation is obtained when a phase-controlled local oscillator field at the anti-Stokes frequency is out of phase with the induced CARS field in the focal volume. Unlike in traditional interferometry, this de...
متن کاملHigh order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy.
Polarization-resolved coherent anti-Stokes Raman scattering (CARS) is usually applied to measure the depolarization ratio in solutions or evidence orientation effects in anisotropic media. We present an extensive approach based on multiple-field polarization-resolved CARS, in order to unravel the complexity of vibrational resonances up to the fourth-order symmetry, at the microscopic scale in n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2010